Group facilitators

Guillaume Ginolhac and Nicolas Méger.

Issue and perspectives

Artificial intelligence is at the heart of technological, scientific, economic, societal and environmental transformations. In this context, data modeling for description, decision, prediction and/or forecasting purposes becomes an essential issue. Our workgroup is dedicated to this issue and brings together methodological works dealing with machine learning (deep learning, data mining), the fusion of uncertain data (probabilities, possibilities, belief functions, fuzzy sets, intervals) and signal processing (wavelets, statistical learning, differential geometry). These works are mainly applied to/triggered by the analysis of remote sensing data with a temporal dimension; most often for environmental monitoring purposes (crustal deformation, erosion, deforestation, glacial retreat, marine pollution). Remote sensing work is also being carried out to produce such data, with the main objectives of measuring displacements, detecting changes and inverting models. Our scientific perspectives are multiple and concern 1) the consideration of the volume, uncertainty and complexity (spatial, temporal, physical properties) of data, 2) the fusion of data and/or models, and 3) the interpretability of the obtained results.

Keywords: deep learning, data mining, data fusion, uncertainties, remote sensing, time series, environmental monitoring.


Talk on pattern discovery in satellite image time series and displacement field time series, MIAI Grenoble Alpes meeting, May 14, 2020.

PhD defense: C. Lesniewska-Choquet, Possibilistic stochastic modeling and application to change detection in remote sensing images, January 23, 2020.

PhD defense: M. Jauvin, Measurement of surface deformations by satellite radar interferometry – Application to the monitoring of mountain territories and the impact of large construction sites, December 18, 2019.

Demonstration of DTFS-P2miner at ICDM 2019 (19th IEEE International Conference on Data Mining), Beijing, China, November 8, 2019.

Tutorial on the mining of displacement fields and their confidence measures using DTFS-P2miner, in collaboration with the DM2L and Imagine teams of UMR LIRIS. Autumn school of the MDIS 2019 national conference, Strasbourg, France, October 15, 2019.

Statistical Learning for Signal Processing workshop, Annecy, France, July 15-16, 2019.

SAR & Cryosphere workshop, Annecy, France, June 11, 2019.


Latest publications

Assistance via IoT Networking cameras and Evidence Theory for 3D Object Instance Recognition: Application for the NAO Humanoid Robot. Didier Coquin, Reda Boukezzoula, Alexandre Benoit, Thanh Long Nguyen.  Internet of Things, 2020. doi: 10.1016/j.iot.2019.100128

Gradual Interval Arithmetic and Fuzzy Interval Arithmetic. Reda Boukezzoula, Laurent Foulloy, Didier Coquin, Sylvie Galichet. Granular Computing, 2019. doi: 10.1007/s41066-019-00208-z

A Data-Adaptive EOF-Based Method for Displacement Signal Retrieval From InSAR Displacement Measurement Time Series for Decorrelating Targets. Rémi Prébet, Yajing Yan, Matthias Jauvin, Emmanuel Trouvé. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5829-5852, 2019.

On Elliptical Possibility Distributions. C. Lesniewska-Choquet, G. Mauris, A. Atto, G. Mercier. IEEE Transactions on Fuzzy Systems, Institute of Electrical and Electronics Engineers, June 2019. doi: 10.1109/TFUZZ.2019.2920803.

Random Matrix Improved Covariance Estimation for a Large Class of Metrics. M. Tiomoko, F. Bouchard, G. Ginolhac, R. Couillet. International Conference on Machine Learning (ICML), Long Beach, USA, June 2019.

Ranking Evolution Maps for Satellite Image Time Series Exploration – Application to Crustal Deformation and Environmental Monitoring. N. Méger, C. Rigotti, C. Pothier, T. Nguyen, F. Lodge, L. Gueguen, R. Andréoli, M-P. Doin and M. Datcu. Data Mining and Knowledge Discovery, volume 33, issue 1, pp. 131-167, January 2019. doi: 10.1007/s10618-018-0591-9.

New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images. A. Mian, G. Ginolhac, J.P. Ovarlez, A. Atto. IEEE Transactions on Signal Processing, vol. 67(2), pp 520-534, January 2019.


Ongoing projects 

ANR MARGARITA: Modern Adaptive Radar: Great Advances in Robust and Inference Techniques and Application. 2019-2021.
TOTAL project: oil slick detection, large ocean surface SAR data volumes, heterogeneous data fusion, deep learning. 2018-2021.
ANR ReVeRIES: Recreational, interactive and educational plant recognition on smartphones. 2016-2020.


Doctoral student:E. Amri, H. Hadri, A. Hippert Ferrer, M. Jacquemont, G. Marsy, A.Collas.
Post-doctoral fellows: F. Bouchard, S. Medjram.

Completed projects

ANR PHOENIX: Parsimony, Huge Observations of Earth Non-stationarities from Images Time Series. 2015-2019.
ANR VIP-Mont Blanc: understanding and predicting environmental changes: a research project on the morphological evolution of the Mont Blanc massif. 2014-2018.
FUI G4M: multi-profession and multi-material geodetection. 2014-2017.
FUI MISAC: Multi-functional Intelligent Surface for Automative and Aeronautics Cockpits. 2012-2015.
European project INTERREG GLARISKALP : risque glaciaire. 2011-2013.
ANR FOSTER: spatiotemporal data mining: application to the understanding and monitoring of erosion. 2011-2013.
ANR REVES: plant recognition for smartphone interfaces. 2010-2013.
ANR EFIDIR: information extraction and fusion for the measurement of displacements using radar imaging. 2008-2012.
ADIXEN project: event forecasting in datastreams for predictive maintenance. 2007-2010.
ACI MEGATOR: measurement of the evolution of alpine glaciers by optical and radar remote sensing. 2004-2007.